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Abstract—What is the function of babbling in language 
learning? Our recent findings suggest that infants’ immature 
vocalizations may elicit simplified linguistic responses from their 
caregivers. The contributions of parental speech to infant 
development are well established; individual differences in the 
number of words in infants’ ambient language environment 
predict communicative and cognitive development. It is unclear 
whether the number or the diversity of words in infants’ 
environments is more critical for understanding infant language 
development. We present a new solution that observes the relation 
between the total number of words (tokens) and the diversity of 
words in infants’ environments. Comparing speech corpora 
containing different numbers of tokens is challenging because the 
number of tokens strongly influences measures of corpus word 
diversity. However, here we offer a method for minimizing the 
effects of corpus size by deriving control samples of words and 
comparing them to test samples. We find that parents’ speech in 
response to infants’ babbling is simpler in that it contains fewer 
word types; our estimates based on sampling also suggest 
simplification of word diversity with larger numbers of tokens. 
Thus, infants, via their immature vocalizations, elicit speech from 
caregivers that is easier to learn.  

Keywords—Parent-child interaction, prelinguistic vocalizations, 
conversational turn-taking, language environment, simulation 

I. INTRODUCTION 
Across many species, parents’ responses to their offspring’s 

immature vocalizations play a crucial role in the development 
of communication. Vocal learning in humans [1], songbirds [2], 
and marmosets [3] relies on adults’ coordination of their 
vocalizations around those of their offspring to create 
contingent social feedback that facilitates learning of more 
advanced vocal patterns. Human infants develop vocal 
communication gradually, forming expectations that their 
immature babbling will elicit social input [4,5]. Individual 
differences in communicative development are related to the 
social environment, as no two parents talk to their children in 
exactly the same way. Variability in the statistical structure of 
parent’s speech to prelinguistic infants predicts later language 
outcomes [6]. While our understanding of parents’ speech and 
responsivness to infants is well-informed by research, the 
statistical structure of parents’ speech in response to infant 
babbling has received little attention.  

Recent efforts have revealed that infant babbling catalyzes 
the production of simplified, more easily learnable language 
from their caregivers [7]. Parents’ speech in response to infants’ 
babbling is both lexically and syntactically simplified. Parent 

utterances that were contingent on babbling contained fewer 
unique word types, shorter utterance lengths and higher rates of 
single-word utterances. Whether this simplification effect is 
consistent across infant development, larger sample sizes (i.e., 
larger corpora) and longer time periods is unknown. 
Sophisticated efforts to disentangle sample size effects from 
true effects of diversity of words among different data sets are 
ongoing [8]. A deep understanding of just how simplified 
parents’ responses to babbling are and how linguistic 
simplification may scale with sample size is the goal of the 
current work.  

Analytical, theoretical, and interpretation problems have 
emerged from the recent surge in large-scale data collection, but 
new techniques are emerging to address them. The main reason 
research concerning word diversity poses a challenge to 
researchers is because word frequency rank distributions do not 
form a normal distribution. Instead, word ranks are 
characterized by distributions wherein few words are very 

 

 
Figure 1. A word-rank by word-frequency plot of contingent vs non-
contingent words.  
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frequent and many words are rare (see Figure 1 for word 
frequency rank distributions of Elmlinger et al., 2019; also see 
[9]). These heavy-tailed distributions characterize the words 
infants hear, the regularity of objects infants see in everyday 
learning environments, and which object labels children learn 
first [10]. Summarizing these distributions with a single value 
is not straightforward because assumptions of central tendency 
do not apply [11]. Recent insights have demonstrated the 
predictive power in deriving ratios of the number of unique 
words (types) to the total number of words (tokens), that is, the 
type-token ratios (TTR), of target language corpora [12]. 
However, two main problems, in our view, remain 
underdetermined with regard to TTR measures. First, it is well 
known that TTR measures cannot be compared if they were 
derived from language corpora, or subsets of words, with 
differing sample sizes, as TTR scales with sample size non-
linearly [13]. Second, any one measure of type-token 
relationships will obscure the nature of word distributions 
produced over different periods of time [8]. For example, the 
number of word types observed in a single corpus reveals little 
about the number of word types in a corpus containing a 
different number of words. Montag and colleagues have begun 
to address these issues with success. We aim to add a new 
technique to shed additional light on the analytical issues in 
parallel with our main research question: what is the 
relationship between number of words and diversity of words 
that infants’ babbling elicits from their caregivers?  

With larger scale data analyses on the rise, insights can be 
gleaned from real-time analyses which are simulated to scale to 
those of longer time-scales. The linguistic environment of 
infants in everyday learning contexts operates at multiple 
timescales. Learning happens in real-time from caregivers’ 
contingent responses to infants babbling [14]. Learning also 
happens gradually over long time scales over successive vocal 
turn-taking bouts [15]. Here, we connect the two timescales by 
analyzing parent utterance data from recordings of free-play 
parent-infant interactions and simulate type-token relationships 
of parents’ speech in response to babbling, as compared to 
parents’ speech which was not uttered in response to babbling. 

II. METHODS 

A. Participants 
Thirty mother-infant dyads participated (infant mean age = 

9.20, range: 9.4 -10.14). Participants were recruited from birth 
announcements in local newspapers and through 
advertisements. Mothers received a t-shirt or a bib as a gift for 
their participation. Participants were part of a larger corpus from 
a previously published study [1,7].  

B. Apparatus 
Sessions were recorded in a naturalistic environment (a 12 

ft. x 18 ft. playroom) with toys, a toy box, and posters of 
animals. Infants were free to roam around the room and explore. 
Interactions were video recorded via three remote-controlled 
digital video cameras. To obtain detailed audio recordings, each 
infant wore denim overalls concealing a wireless microphone 
(Telex FLM-22; Telex Communications, Inc., Burnsville, MN) 
and transmitter (Telex USR-100). Caregivers wore a wireless 
lapel microphone (Telex FLM-22) with a transmitter concealed 
in a pouch at their waist (Telex USR-100) (Figure 2a). Infant 
vocalizations and caregiver speech were recorded on distinct 
audio channels. 

C. Procedure 
Participants came to the lab for 30-min play sessions. The 

sessions were unstructured, with parents asked to play as they 
normally would at home. 

D. Speech Transcription 
Parents’ speech during play was transcribed in full. 

Caregiver utterances were segmented if they were bounded by 
silence longer than 2 sec and/or if they exhibited terminal pitch 
contours [16]. Utterances from the parents were categorized as 
contingent if they occurred within 2 sec of the offset infants’ 
vocalizations (Figure 2b); all other parent utterances were 
categorized as non-contingent (see Figure 2c). Caregiver 
responses to crying, fussing, and vegetative vocalizations (e.g., 
coughs) were excluded from our analysis. 

 
Figure 2. (a) Parents and infants outfitted with wireless microphones played with toys in the lab. Example speech streams from recordings, which allowed 
for categorical coding of parents’ speech as contingent on infants’ vocalizations (b) or not (c). Contingent parent speech was operationalized as speech 
which occurred within 2 seconds of a non-cry infant vocalization. 



E. Sampling procedure 
Type-token ratios are highly determined by sample size and 
thus do not lend themselves to straightforward interpretation 
when relying on a single sample [8]. We address this 
limitation by capturing the number of unique word types at 
multiple sample (token) sizes. To observe the aggregate 
number of unique word types as we increased the number of 
tokens, we conducted random sampling from contingent and 
non-contingent words at various sizes from the two corpora 
separately. The computational basis underlying the following 
simulations is available as a jupyter notebook on 
https://github.com/selmling/Natural_Statistics_Simulation            
 

Test Sample. We constructed aggregate samples by taking 
incrementally larger random samples (from 100 – 3000 words) 
that increased in increments of 100 words. This sampling was 
conducted with replacement, so each sample was selected from 
the total set of all words in each corpus. The procedure was 
repeated 100 times for each sample size. The number of unique 
word types was then counted for each sample. 

Control Sample. The corpus of contingent words (n = 
6,199) is much smaller than our corpus of non-contingent words 
(n = 19,548), so we sought to understand the effects corpus size 
has on our aggregate test sample. To accomplish this, we 
randomly selected new words at equivalent token sizes (6,199 
words and 19,548 words) observed in our original contingent 
and non-contingent corpora from the total number of words in 
the corpus (summing contingent and non-contingent). This 
produced new corpora that tested the effects of sample size 

because any effect of the contingent or non-contingent words 
would be equally present in both samples due to randomization. 
Our control sample was designed to assess whether having 
fewer total words in our contingent corpora could account for 
the smaller number of word tokens observed in our contingent 
test sample. By constructing control samples of the same token 
size as our contingent and non-contingent samples, we can 
isolate the effects of smaller corpora size on word type counts. 

III. RESULTS 
Below we present two datasets that highlight how parents 

reduce their lexical diversity when responding to infants’ 
babbling. We first compared parents’ contingent and non-
contingent speech to determine whether they differed in their 
number of word types as a function of increasing word token 
sizes (type-token ratio curves – TTR). As opposed to observing 
a single TTR value which is highly influenced by sample size, 
we observe TTR over a range of sample sizes to investigate 
potential differences in contingent vs non-contingent word type 
changes as a function of total words (tokens). Our approach 
draws both from well-known and more recent advanced 
attempts at characterizing the interdependence of token and type 
size at scale [8,17,18]. In effect, our technique generates a 
hypothetical subject which would hear random samples of 
speech across all of our subjects at a timescale much longer than 
we could implement in the lab. If we observe differences  

  
 
Figure 3. (a) Mean number of unique words (types) as a function of the total number of words (tokens) in the samples taken from words uttered contingently 
and non-contingently on infants’ vocalizations and the individual type-token counts per subject. (b) Range of unique words (types) as a function of the total 
number of words (tokens) in the samples taken from words uttered contingently and non-contingently on infants’ vocalizations. 
 



 
 

Figure 4. (a) Mean number of unique words (types) as a function of the total number of words (tokens) in the samples taken from control corpora of contingent-
sized and non-contingent-sized random samples of words. (b) Range of unique words (types) as a function of the total number of words (tokens) in the samples 
taken from control corpora of contingent-sized and non-contingent-sized random samples of words.  

 
 

 

between the TTR values for contingent and non-contingent 
speech at a variety of sample sizes, this indicates that parents’ 
utterances differ in diversity of words as a function of whether 
they are responding to infant vocalizations. We then asked 
whether the difference between contingent and non-
contingent word types increased as a function of increasing 
token size. By taking the difference between control and test 
simulation results, we examined whether or not the difference 
between the number of contingent and non-contingent word 
types remains constant over increasing word token sizes. 

A. Contingent speech is less lexically diverse than non-
contingent speech  

 
Test Sample Results. Figure 3a shows the mean number 

of unique words (types) as a function of the total number of 
words (tokens) from the random test samples of contingent 
and non-contingent words. When we compared the type 
counts in paired contingent and non-contingent samples at 
token size 100, 53 of the 100 pairs of random samples 
contained a greater number of unique types in contingent 
than in non-contingent speech. When we compared type 
counts at token size 400, only 38 of the 100 pairs of random 
samples contained a greater number of unique types in 
contingent than in non-contingent speech. In comparisons of 
all token sizes greater than 400, there were more unique word 
types in samples from non-contingent utterances; moreover, 
in all token sizes greater than 1600, 100 out of 100 paired 
random samples contained a greater number of unique types 
in non-contingent speech. For all sample sizes greater than 

2400, the ranges of unique word types are completely 
nonoverlapping (Figure 3b). These estimations suggest the 
possibility for contingent utterances to be equally repetitive 
as non-contingent utterances at smaller sample sizes (at 
token sizes < 400) and for contingent utterances to be more 
repetitive than non-contingent at larger sample sizes. This 
simplification of word types when responding to infants’ 
babbling is consistent with accounts of adult-adult dialog 
where simplified initial responses to conversation partners 
spoken contingently on the partner’s speech afford 
opportunities for speakers to decide how to frame their next 
thought, spoken non-contingently, in longer, more complex 
utterances [19].  

 
Individual subject type and token counts of contingent 

and non-contingent speech can also be seen in Figure 3. The 
type and token counts here are much lower than the means 
derived from random sampling because the pragmatic 
coherence of an individual caregiver’s speech required her 
speech to be much more repetitive than would be found in a 
random selection of a similar number of words from all 
participants.  

 
Control Sample Results. Figure 4a shows the mean 

number of unique words (types) as a function of the total 
number of words (tokens) from the random control samples 
of contingent and non-contingent words. Again, because the 
corpus of contingent speech is much smaller than the corpus 
of non-contingent speech, we derived the control sample to 
test the effects of corpus size on resulting type-token ratio 
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curves. If the difference we observe between the curves in 
Figure 3 are due to corpus size, we would observe similar 
differences in samples drawn from similarly-sized corpora in 
the control sample. When we compared the type counts in 
paired contingent and non-contingent samples at token size 
100, 58 of the 100 pairs of random samples contained a 
greater number of unique types in contingent than in non-
contingent speech. When we compared type counts at token 
size 900, only 47 of the 100 pairs of random samples 
contained a greater number of unique types in contingent 
than in non-contingent speech. In comparing all token sizes 
greater than 900, there were more unique word types in 
samples from non-contingent utterances. For all token sizes, 
the ranges of unique word types overlap (Figure 4b). These 
estimations suggest that, given randomly sampled words of 
corpus sizes used in the test simulation, we do not observe 
divergence in the type-token ratio curves. We interpret this 
to mean that the divergence we see in the test simulation is 
due to actual word diversity differences and not differences 
in sample size. 

B. Contingent speech becomes increasingly less lexically 
diverse than non-contingent speech with increasing 
token size 
One possibility is that, although there is no overlap in the 

ranges sampled, the trajectory in types vs. tokens in 
contingent test vs. control random samples are 
indistinguishable. In other words, simply because the test 
sample demonstrates non-overlapping ranges and the control 
sample demonstrates completely overlapping ranges does not 
clarify whether the contingent samples of test vs. control 
random samples are different from one another over varying 
token sizes. Here we take the difference score between test 
and control samples of contingent and non-contingent type 
counts across all token sizes to observe the magnitude of 
difference between contingent samples from the test 
simulation and contingent-sized-random samples from the 
control simulation. We treat this difference as the number of 
words expected to differ due to the effect of parents 

responding to infants’ babbling. As seen in Figure 5, the 
difference between control and test contingent samples 
emerges at token size 500 and continues to grow at each 
increasing step in token size.  

IV. DISCUSSION 
The contributions of our simulated environments are 

threefold. First, the distributional differences between 
parents’ contingent and non-contingent speech reported in the 
current analyses suggest a new form of influence that infants 
wield over their learning environment. Infants’ immature 
vocalizations may create language learning opportunities by 
eliciting responses from parents that contain simplified, more 
learnable information. In our view this is an emergent 
property of the parent-infant system that leads to learning. 
Second, our simulations estimate that the difference between 
contingent and non-contingent distributions of words would 
not remain constant at increasing word counts. It estimates 
that, at scale, contingent talk to infants will remain simplified 
with increasing words while non-contingent talk to infants 
will continue increasing in diversity, thus expanding the 
complexity difference between the two distributions as a 
function of more talk. Third, because more talk is positively 
but nonlinearly related to more unique words, less talk in a 
sample need not be the source of lexical simplification of that 
talk, as demonstrated by our simulations. It is not the case that 
contingent talk is simply in need of ‘catching up’ with non-
contingent talk in terms of linguistic complexity. From our 
simulation, it is estimated that no amount of time would allow 
contingent talk to become as linguistically complex as non-
contingent talk. Contingent talk follows a different type-token 
curve, or a different trajectory of linguistic complexity as a 
function of linguistic activity. 

Previous highlights of the limitations of using type-token 
ratio measures should not discourage the use of type-token 
curves. Instead, we hope to highlight practical uses of these 
curves that encourage new techniques to query the nature of 
word distributions in children’s language environments. To 
be sure, it is correct to say that type-token ratios are 
confounded by sample size. However, as pointed out in our 
simulation, it is equally correct to say that it is possible to 
query and compare distributions of words even if the sizes of 
the datasets are unequal. New insights can be revealed 
through the use of type-token ratio curves, in conjunction 
with size-matched control curves to demonstrate what 
influence sample size has over the nature of the curve. 

Our simulation estimates that over long timescales, 
parents’ responses to infants’ babbling will generally contain 
more repetition of words. The effects of repetition on 
language development are mixed at longer timescales (e.g., 6 
months to a year); more repetition has been associated with 
both lower vocabulary later in development [20] and with 
larger vocabulary [6]. Over shorter time-scales, more 
repetition in contingent parent speech predicts less advanced 
infant vocalizations [7]. The effects of repetition on language 
development likely depend on the type of repetition that is 
used. Partial repetition in the form of variation sets, in which 
adjacent utterances contain some words in common, 
facilitates statistical learning in adults and could promote 
language learning in infants [21]. 

In our view, immature vocalizations create learning 
opportunities by eliciting social responses that contain 

  
 

Figure 5. Difference in unique words (types) between control and test 
samples as a function of the total number of words (tokens) in the 
samples taken from contingent and non-contingent words. 
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simplified, learnable information. These findings have 
important implications for current large-scale data collection 
and intervention studies on language development. 
Sophisticated and useful data on changes in linguistic 
structure as a function of contingent timing can be gleaned 
from home recording efforts that are currently focused on 
turn-taking and other forms of parent-infant interaction 
[22,23]. Several interventions for at-risk families currently 
focus on increasing the number of words parents say (e.g. 
Providence Talks; http://www.providencetalks.org) or turn-
taking interactions with infants [24] but have not, to the best 
of our knowledge, focused on the relevance of learning 
distributional and temporal properties of parents’ speech to 
infants.  

Our results suggest that infants, via their immature 
vocalizing, play an important role in shaping their own 
language environment. Accurate prediction of environmental 
changes, an underlying learning mechanism in computational 
models of vocal learning, may also support infant learning in 
social contexts [25,26]. Models based on curiosity choose to 
learn from data over which they can minimize the error of 
their own predictions at the highest rate. By vocalizing, 
infants have the opportunity to observe the effects of their 
vocalizations on parents. Over their first year, infants quickly 
come to associate their immature vocalizations with 
responses from their parents [5]. Eliciting mature speech 
sounds from caregivers may become the target of infants’ 
curiosity and subsequent guidance of vocal development. For 
more advanced understanding of early infant learning, future 
experimental, large-scale observational, and computational 
research should examine the effects infants have on the 
temporal and distributional properties of parents’ speech. 
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