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The capacity to learn novel vocalizations has evolved convergently in a wide
range of species. Courtship songs of male birds or whales are often treated
as prototypical examples, implying a sexually selected context for the
evolution of this ability. However, functions of learned vocalizations in
different species are far more diverse than courtship, spanning a range of
socio-positive contexts from individual identification, social cohesion, or
advertising pair bonds, as well as agonistic contexts such as territorial
defence, deceptive alarm calling or luring prey. Here, we survey the diverse
usages and proposed functions of learned novel signals, to build a framework
for considering the evolution of vocal learning capacities that extends beyond
sexual selection. For each function that can be identified for learned signals,
we provide examples of species using unlearned signals to accomplish the
same goals. We use such comparisons to generate hypotheses concerning
when vocal learning is adaptive, given a particular suite of socio-ecological
traits. Finally, we identify areas of uncertainty where improved understand-
ing would allow us to better test these hypotheses. Considering the broad
range of potential functions of vocal learning will yield a richer appreciation
of its evolution than a narrow focus on a few prototypical species.

This article is part of the theme issue ‘Vocal learning in animals and
humans’.
1. Introduction
Vocal production learning is a rare trait, known in only seven animal taxa [1].
The range of species studied as model systems is even more restricted.
Although researchers often have one or a few particular ‘paragon’ examples
in mind when considering the evolution of vocal learning capacity (e.g. zebra
finch song), the range of uses for learned novel vocalizations is surprisingly
broad and has evolved in a wide variety of contexts: parental care, signalling
group membership, territorial defence, mate attraction and mate bonding.
However, so strong is this focus on a few model species that certain clades of
vocal learners (e.g. seals or elephants) receive far less attention, and certain
functions (e.g. deceptive calling) are typically understudied. Interest in vocal
learning in some traditionally lesser-studied species has recently expanded,
with over 1000 papers published in the last 10 years mentioning vocal learning
across all species of bats, up from only about 160 from the 1990s. However,
nearly twice as many papers have been published in the last 10 years on
vocal learning in just one finch species (the zebra finch). We fear that focusing
investigation primarily on songbirds and humans may discourage exploration
of non-canonical vocal functions, and we suggest that discussions of the
evolution of vocal learning should keep in mind the full range of possible func-
tions, or risk neglecting the many phylogenetic and adaptive contexts in which
this capability has arisen. Our goal here is to encourage a broader discussion of
such neglected clades and functions.

For example, predatory northern shrikes mimic the songs of prey bird
species, and may use these imitations to lure prey to their deaths [2]. Spectacled
parrotlets produce short contact calls that indicate both their individual identity
and their group membership, and this call rapidly changes when they switch
groups [3,4]. Young dolphins learn an individual-specific ‘signature whistle’
in their first year of life. They appear to model their whistles after those of
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conspecifics but modify them into a novel form [5,6]. Male
humpback whales in a given region all sing the same song,
but gradually pick up variants and innovations, so that this
shared song constantly changes over the years [7]. Fork-
tailed drongos mimic other species’ alarm calls, and use
these learned alarms deceptively to steal food [8]. As
adults, only male sac-winged bats sing, defending their terri-
tory, but young of both sexes imitate their local male’s song
and learn it through a process reminiscent of human babbling
[9]. When deprived of conspecific contact, elephants can learn
to imitate the vocalizations of other species, including convin-
cing replications of human speech [10]. What all of these
examples have in common is that they involve vocal learning,
specifically call production learning—but their functions are
surprisingly diverse. Such diversity of functions implies a
wider diversity of underlying evolutionary pressures and
developmental mechanisms that cannot be accounted for by
the limited set of species that currently receive the most
research attention.

The examples above provide a taste of the many functions
that learned vocalizations can play in communication
systems, including parent-offspring identification, signalling
group membership, deceptive alarm calling, heterospecific
recruitment for mobbing, identifying host species among
nest parasites and even prey luring. These span a range
from strong shared interests (e.g. among parents and off-
spring), partially shared interests (mated pairs; close kin) to
fully opposed interest (predators and prey, feeding competi-
tors, or territorial rivals). These diverse functions for learned
vocalizations have emerged as solutions to particular evol-
utionary challenges faced by a given species. However, the
question remains: when should adaptive signals be learned
from signals in the environment (including heterospecifics),
rather than predetermined by genetic information? Indeed,
many bird species solve the issue of species identification
and mate attraction with unlearned songs (including subos-
cine passerines such as flycatchers), fireflies achieve prey
luring with innate flashing displays [11], and many species
use unlearned alarm calls. Under what circumstances is pro-
ducing a learned signal more adaptive than when signals are
genetically canalized, given that both causal pathways can
achieve the same function? Or is it instead the case that
vocal learning has emerged in different clades for particular
common functions, and then been co-opted for other, diverse
functions over the course of evolutionary time? Answering
these questions requires a closer examination of the specific
socio-ecological circumstances that lead to complex vocal
production learning.

In this review, we survey the many proposed functions of
vocal production learning in birds and mammals. We will
adopt a rather restrictive definition of vocal production learn-
ing, namely the capacity to learn vocalizations outside of the
reliably developing or ‘innate’ vocal repertoire (‘vocal pro-
duction learning’ or VPL hereafter). Thus, modifications of
species-typical calls, as seen in many birds and mammals,
will be left aside, as will perceptual and cognitive capacities
to learn to recognize or interpret novel sounds or vocaliza-
tions. The reason for this ‘high bar’ is that even given this
stringent definition, VPL has evolved convergently in at
least seven clades, and appears in thousands of distinct
species (most of them little studied).

By contrast, we will be permissive with regard to pro-
posed functions, because, in many cases, only one or a few
species appears to make use of learned vocalizations in a par-
ticular manner, and the evidence for a putative function
could often use improvement. For example, the imitation of
prey species vocalizations by a predator as a ‘lure’, is firmly
known only for humans, and hypothesized in one songbird
species (northern shrikes [2]). We hope to inspire further
work on some of these less-studied functions and species.
Previous reviews of the functions of vocal learning have
endeavoured to trace the evolution of VPL in birds [12] or
mammals [13], and focused on how learning may affect the
generation, usage and comprehension of sounds. By contrast,
our goal is to interpret VPL in an ecological and evolutionary
framework, across both birds and mammals, identifying
putative socio-ecological traits that co-occur in species
which employ learned vocalizations.

The paper is structured as follows. We start by briefly
summarizing results from a selection of bird and mammal
species that, we hope, concisely illustrates the wide range of
uses to which vocally learned signals can be put. We also pro-
vide examples where this function is achieved without vocal
learning (figure 1), to illustrate the multiple evolutionary sol-
utions to the demands of various functions, raising the
question of under which circumstances is a learned vocaliza-
tion more adaptive than an innate, less flexible one. We will
then explore in more detail the functions of VPL in two
well-studied clades, parrots and human infants. Finally, in
the third part of the paper, we examine the multiple proposed
functions of vocal learning from a sociobiological and eco-
logical viewpoint, hoping to gain insight into the conditions
under which particular functions are likely to evolve. We
end by proposing several hypotheses, making suggestions
for future research, and pointing out lacunae in current
knowledge, concluding that a broader appreciation of the
many functions of VPL should inform future research into
its evolution and mechanistic basis.
2. Selected case studies for vocal learning
We will start with several vignettes illustrating the wide var-
iety of functions known (or proposed) for learned
vocalizations, emphasizing those that deviate from the stan-
dard male songbird model.

(a) Deception
Human hunters have used vocal mimicry to attract prey for
millennia [14,15]. It has long been suggested that some
birds might also mimic prey vocalizations to attract them
[16–18], but no conclusive evidence demonstrates this (cf.
[19]). However, northern shrikes (Lanius excubitor) are gener-
alist predators that often prey on smaller birds [20]. Both
sexes sing through the year for the functions of attracting
mates, facilitating pair formation and defending territory,
and (like many shrikes) their songs include clear examples
of vocal mimicry (heterospecific imitation). Playback of
shrike song attracted small passerine birds significantly
more than control song (American robin) or silence [2]. This
is consistent with the hypothesis that northern shrikes have
evolved a novel function for vocal learning—to lure avian
prey via mimicry—but more research is clearly needed to
support this hypothesis. By contrast, multiple predatory
species use innate anatomical adaptations to lure prey
(e.g. anglerfish [21]), and margays are reputed to produce
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greater and lessser spear-nosed
bats, bottlenose dolphin, orange-
fronted conure

bottlenose dolphin, Horsfield’s
bronze cuckoo, zebra finch

greater sac-winged bat, green-
rumped parrotlet, long-billed hermit,
zebra finch, Australian magpie

bottlenose dolphin, orca, budgerigar,
rufous-breasted hermit, yellow-naped
amazon, kea, red crossbill, greater
spear-nosed bat, green-rumped
parrotlet

walrus, greater sac-winged bat,
budgerigar, long-billed hermit, northern
mockingbird

superb fairy wren

green-rumped parrotlet, orange-
fronted conure, bottlenose dolphin,
spectacled parrot

African grey parrot, bottlenose
dolphin

(only usage/association learning
known). Fork-tailed drongo, brown
thornbill, Sri lankan magpie, black-
capped chickadee, noisy miner

racket-tailed drongo, black-capped
chickadee, phainopepla, noisy miner,
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humpback whale, long-billed hermiit
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orange-chinned parakeet, rufous-
and-white wren, peach-faced
lovebird, yellow-naped amazon

sac-winged bat, palm cockatoo,
sombre hummingbird, vasa parrot,
song sparrow, eclectus parrot

northern shrike

elephant seal, Egyptian fruit bat,
sombre hummingbird, humpback
whale, many songbirds

red squirrel,
neotropical singing
mice, antbird, wolf
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rock hyrax, eastern
phoebe, red deer,
orangutan

titi monkeys, barred
owl, siamang, Alston’s
singing mouse, barred
antshrike
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manakin

common marmoset,
California ground
squirrel, terns and
gulls, black phoebe

Gunnison’s prairie
dog, vervet monkey,
suricate, Belding’s
ground squirrel

vervet monkey,
Gunnison’s prairie dog

white-nosed coati,
spotted hyena

n/a

koala, smooth
guardian frog, black
coucal cicada

African wild dog,
whooper and Bewick’s
swans, pygmy
marmoset

pygmy marmoset,
Japanese quail

suricate, banded
monogoose, pig,
pigeon

cow, goat, western
sandpiper, razorbill

Figure 1. Examples of varying functions for learned and unlearned vocal signals across species. Functions are divided into shared interests, in which signaller and
receiver mutually benefit from the signal, and opposed interests, in which the signaller and receiver are in conflict. These functions are further subdivided into
subtypes. For each subtype, we provide examples of vocal production learning (VPL) species which employ vocal signals for that function, as well as non-VPL species
as examples of achieving the same function without learning. For references and scientific species names, see the electronic supplementary material, table S1.
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calls that lure in tamarin prey [22], but are not known
to be vocal learners.

Another antagonistic use of vocal mimicry is provided by
the fork-tailed drongo (Dicrurus adsimilis). Several species
respond to drongos’ alarm calls, which often warn of the
presence of a predator. However, drongos in the Kalahari
desert use alarm calls in the absence of a predator to cause
competitors to flee and abandon food, which they eat,
obtaining up to 23% of their food this way, and using both
their own species-typical alarms and mimicking alarm calls
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of 51 other species [8]. Although other species use their
species-typical alarm calls deceptively to obtain food [23],
competitors tend to habituate to the same call, while varied
alarms maintain their salience [8]. However, the mimicry abil-
ities of drongos can also be used for non-deceptive functions.
Racket-tailed drongos (Dicrurus paradiseus) mimic both mob-
bing and alarm calls of other species regularly [24,25]. They
produce mobbing calls honestly, in the presence of predators,
and incorporation of heterospecific mobbing calls induces
more intense mobbing by the mimicked species. Although
it is not uncommon for a species to respond to heterospecific
mobbing calls [26,27], playbacks showed that drongo-specific
mobbing calls were less effective at recruiting heterospeci-
fic individuals than calls including mimicry [25]. Because
both callers and mobbing individuals jointly benefit from
this predator-deterrent behaviour, such mobbing recruitment
involves shared interests (unlike deceptive fork-tailed drongo
alarm calling). However, deterrence functions can also be
accomplished by unlearned sounds, e.g. nestling burrowing
owls produce an unlearned call that mimics rattlesnakes
and may deter nest-burrow predators or competitors [28].
Similarly, nestling northern flickers (Colpates auratus) produce
a buzzing sound, reminiscent of a beehive, potentially
deterring predatory squirrels [29].

Another fascinating case of learning heterospecific vocali-
zations is provided by the indigobird Vidua chalybeate.
Indigobirds belong to a nest-parasitic genus, in which each
of the visually similar species has a preferred host [30,31].
Male indigobirds mimic their host father’s song as adults,
and females imprint on their host father’s song, allowing
the females to selectively mate with males that sing the
song of their own host species, despite the close visual resem-
blance among host Vidua species [32,33]. Although many
species use unlearned calls or songs for species identification,
this unusual usage of vocal learning allows assortative
mating, benefiting both male singers and female listeners,
but may also pave the way for flexible exploitation of new
host species [31].
(b) Individual and group identification
Vocal learning occurs in multiple bat species, where learned
calls often seem to play a role in individual or group identi-
fication. The screech calls of adult greater spear-nosed bats
Phyllostomus hastatus are socially modified to encode a
group signature [34], while in the lesser spear-nosed bat
Phyllostomus discolor, isolation calls of pups converge to
resemble calls of their mothers but pups raised in isolation
do not acquire normal calls [35,36]. There also appear to be
group dialects in this species [37], which has recently
shown to have volitional control over vocalizations, changing
specific acoustic parameters in an operant situation [38].
Finally, in the sac-winged bat Saccopteryx bilineata, pup calls
from both sexes converge to match those of their resident
male’s territorial ‘songs’ [9], again suggesting a group
identification function.

Similarly, orcas (Orcinus orca) live in tight-knit groups
called ‘pods’ which associate with higher-level ‘clans’.
Orcas off the coast of British Columbia are often highly
vocal, and within each pod, there is a substantial sharing of
the entire vocal repertoire; furthermore, there is less but still
significant sharing at the clan level [39–41]. Both pods and
clans represent matrilines and thus kin groups and the
shared repertoire may serve to behaviourally identify the
pod and clan affiliation of the caller [39]. Although evidence
for vocal learning of these wild dialects remains circumstan-
tial, recent experiments clearly demonstrate a well-developed
capacity for vocal learning in orcas [42]. Together, experimen-
tal and field data suggest that, as for bottlenose dolphins
[5]—but contrasting sharply with baleen whales—odontocete
vocal learning is well-developed in both sexes.

(c) Attraction and contact
Like most baleen whales, male humpback whales (Megaptera
novaeangliae) produce display vocalizations, both on their
breeding grounds and while migrating to and from them.
Mysticete vocal displays range from simple and highly repeti-
tive calls in fin or blue whales [43,44] to quite complex songs
in bowheads [45] and humpbacks [46,47]. Migrating male
humpbacks typically begin to sing when they have encoun-
tered a female and sing for longer durations when a female
is nearby, suggesting a courtship or mate-attraction function
of song [48]. Singing humpback males may, therefore, consti-
tute a ‘floating lek’ that attracts females to the mating
area, potentially stimulating female receptivity [49]. How-
ever, males are aggressive towards other singing males and
will avoid producing song if another competitive male is
close by, suggesting an additional function for intra-sexual
selection [50].

Within mated pairs, many taxa engage in vocal duetting,
but the function of duets remains debated, and probably
varies both between and within species [51]. Duetting can
be directed at conspecifics, to declare joint territory, or used
for mate-guarding by making the pair bond evident to
third parties, as in red-backed fairy wren males that duet to
deter extra-pair copulations [52]. Duetting can also function
within the pair, to keep mates coordinated or in contact, as
with black-bellied wrens that duet during territorial disputes
to prevent inadvertent intrapair aggression [53]. Female
happy wrens (Pheugopedius felix) duet with their mate to
signal pair commitment, but sing overlapping songs to
signal aggression towards intruders [54]. Finally, male slate-
colored boubous (Laniarius funebris) use multiple distinct
duet song types, each of which serves a distinct function:
reaching breeding synchrony with their mates, defending
territory or mate-guarding [55]. However, species lacking
VPL achieve similar functions by duetting, including titi
monkeys (Pitheciidae: Callicebinae; [56,57]) and Alston’s
singing mice (Scotinomys teguina; [58]), demonstrating that
VPL is not necessary for vocal synchronization, and again
raising questions about the circumstances under which the
flexibility of learning is adaptive.
3. Models of vocal learning
Birdsong is a useful model for vocal learning and language
development in humans owing to similarities at the neuro-
logical level and similar developmental trajectories
(including a ‘babbling’ subsong phase; [59,60]). A recent
survey found that roughly half of songbirds are closed-
ended learners, only able to learn new vocal forms for a
brief developmental period [61], while the other half continue
to show vocal learning into adulthood (like humans). In con-
trast to the enormous learned vocabularies of adult humans,
many songbirds acquire only a small repertoire: about 80% of
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songbirds learn fewer than six songs in their lifetime [62]. In
roughly 30% of songbirds, learning to sing is a male-only
ability [63], and in species in which both sexes sing, females
typically have less expansive or complex repertories than
males [64]. Thus, songbirds range from species where only
males sing and learn a fixed song (or a few songs) early in
life, to those with large repertoires, such as the brown
thrasher (which sing an excess of 1100 song types [65,66]),
or where both sexes retain the VPL capacity into adulthood.
In some songbirds, but not all, vocal learning and production
does not generally resemble that of humans, which have
open-ended, lifelong vocal learning in both sexes, leading
to vast vocal repertoires [67].

We will now discuss two VPL taxa whose mechanisms of
learning have received less attention than songbirds: parrots
and prelinguistic human infants. These taxa have similar
socio-ecological traits, and a similarly diverse suite of func-
tions for learned signals. Along with other complex vocal
learners such as elephants and toothed whales, both of these
groups (i) are highly social, with fission–fusion grouping pat-
terns, and use learned vocalizations in a wide range of social
contexts, (ii) have extended juvenile periods and long life-
spans, characterized by prolonged associations between the
offspring and at least one parent, (iii) use vocal learning in a
sexually monomorphic fashion, with both males and females
learning and vocalizing similarly, (iv) show some evidence
of offspring ‘babbling’ behaviour, and facilitation of vocal
learning by parents, (v) are open-ended vocal learners, conti-
nuing to acquire and modify vocalizations throughout their
lives, and (vi) some show evidence of using some form of
signature call that identifies individuals or groups.
4. The case of parrots
In contrast to many passerines, whose songs are limited in
function to mate attraction and territory defence, most parrots
use their learned vocalizations for a wide range of functions
across multiple social contexts. Parrots also, of course, use
these vocalizations for the purposes of sexual selection, but
given that the predominant mating systems of songbirds and
parrots are highly similar (tending towards solitary nesting
and social monogamy [68]), the function of sexual selection
alone cannot explain the highly flexible vocal learning capa-
bilities of parrots. While most songbirds defend large
breeding territories using their song, no parrot species is
known to do so [69,70]. Because most parrots defend only
the area immediately around the nest, as a pair, the function
of territory defence also seems a poor explanation for their
sophisticated vocal learning capacities. Suboscine songbirds
achieve both mate attraction/pair maintenance and territory
defence without the need for learning (e.g. eastern phoebes
(Sayornis phoebe) [71]). The complex social system of parrots
may play a strong role in the functions for which parrots
employ learned signals.

Parrots’ highly social, fission–fusion foraging culture is a
result of their uniquely challenging diet of toxic, unripe seed,
driven by four strategies: (i) physiological detoxification by
gut microbiota, necessitating rest in communal roosts after
each foraging period [72]; (ii) geophagy (consuming clay-
rich soil to absorb toxins), making songbird-like territories
unfeasible, and requiring information transfer between indi-
viduals with knowledge of clay sources and naive birds
[69,73]; (iii) eating a mixed diet of varying toxicity types and
levels, again requiring information transfer of foraging sites
between individuals; and (iv) neophobia, whereby cautious
individuals learn safe food choices from experienced individ-
uals [68]. Social learning, thus, mitigates the challenges of
geophagy, mixed diet and neophobia, and is partially syner-
gistic with the obligate social roosting time required by
detoxification. This social-learning-dependent system favours
not only high sociality within a flock, but interacting with and
gaining foraging information from as many individuals as
possible, leading to flocks with overlapping foraging ranges
and frequent, selective exchange of individuals with differing
information. Such social complexity requires a robust system
for individual recognition, which parrots appear to accom-
plish largely through distinctive calls [3,74,75]. Note that a
similar mixed toxic diet strategy is used by non-VPL birds
such as the hoatzin (Opisthocomus hoazin), which has small,
stable social groups [76].

What level of referential specificity characterizes parrot
communicative systems? In laboratory settings, parrots
represent one of the few taxa in which referential signalling
has been demonstrated. Alex, the famous African grey
parrot (Psittacus erithacus), was capable of using learned
English words to identify and request objects of particular
colours, numbers, shapes and materials [77]. This shows
that at least some parrots are capable of referential signalling,
but it remains unclear whether wild parrots use such signals
to exchange foraging information. Functionally referential
alarm calls have been documented in a number of species
with complex social structures (electronic supplementary
material, table S1), but there is no clear evidence that parrot
alarm calls are referential, or even that they are learned
[78]. The laboratory tasks that demonstrate this surprising
cognitive sophistication may exploit capacities underlying
the use of flexible vocal signals to keep track of individuals
in a complex and dynamic social environment.

Budgerigars show call convergence in the laboratory
[75,79,80], but there is surprisingly limited evidence of flock-
level vocal convergence in the wild [81], and convergent
versus divergent responses may vary among the sexes [82].
With unstable flocks using fission–fusion dynamics, vocal
convergence at the level of the flock may not be advantageous
for many parrots. However, convergence at the individual
level is adaptive for several species, where individuals tem-
porarily converge on the call of another individual in order
to selectively attract its attention, or ‘address’ it directly [68].
Playback experiments in wild orange-fronted conures found
that individuals modify their contact calls to be more similar
to playbacks [83], and that birds played calls similar to their
own signature call responded at higher rates [84]. When
playbacks did not converge with their own, subjects
responded with agonistic calls [83]. These findings are consist-
ent with the hypothesis that call convergence is used to
address individuals affiliatively, a function particularly valu-
able in species with complex fission–fusion social structures.
Whether vocal learning evolved to enable call convergence,
or more likely existed previously for another function and
was co-opted for this purpose, requires further investigation.

Two further potential examples of referential signals for
individuals in parrots include captive spectacled parrotlets
(Forpus conspicillatus), which produce different contact calls
depending on the individual with whom they are interacting
[4]. Although this could indicate referential ‘naming’ of
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individuals or simply the morphing or converging of call
structures, parrots appear to possess and use the ability to
dynamically alter their learned vocalizations to address
specific individuals, either by ‘name’ or via call structure
matching, in order to coordinate group activities such as fora-
ging. Furthermore, wild Venezuelan green-rumped parrotlet
nestlings (Forpus passerines) develop individual-specific con-
tact calls, but with certain signature attributes learned from
their parents [85]. These calls develop during ontogeny, begin-
ning with short, non-frequency modulated utterances, and
shifting over time into mature, adult-like, modulated contact
calls, influenced by the vocalizations of the parents [86], in a
manner reminiscent of human vocal development from bab-
bling to speech.
il.Trans.R.Soc.B
376:20200235
5. The case of human infants
The prolonged period of immaturity that characterizes vocal
development in human infants affords unique opportunities
for vocal learning and gives rise to a diverse array of func-
tions. Over the first year, the sound patterns of the ambient
language are incorporated into infants’ prelinguistic vocal
repertoire [87–89] and large individual differences emerge
in the rate of vocal development. Data from deaf and
hearing-impaired infants reveal that their babbling is acousti-
cally different from that of hearing infants from six months
onwards, with abnormalities in early syllables and a
marked delay in onset of acoustically mature (canonical) syl-
lables [90–95]. These studies suggest that typical vocal
development requires auditory input. Indeed, infants can
rapidly learn new prelinguistic vocal forms based on social
feedback contingent on their babbling [96,97].

Human vocal learning clearly functions eventually to
acquire the words and sound patterns of the child’s native
language. But what functions are served by prelinguistic
vocal learning? In the most general terms, the plasticity
inherent in early vocal development allows for the production
of a large and flexible repertoire of sounds that serve as the
foundation of words. Prelinguistic vocalizations are highly
plastic, often including energetically demanding, loud
sounds, such as squeals and growls [98] that do not play a
role in later language but are a form of vocal play and explora-
tion. Such plasticity allows infants to explore the acoustic
space of vocalizing. Babbling is contextually free, in that the
sounds are not bound to specific states or objects [98–100].
Although prelinguistic vocalizations share few features of
adult language, their contextual freedom allows for large
modifications in form and function that facilitates the later
emergence of spoken language. These modifications occur to
a large degree as a result of environmental input, including
social feedback, so that the pluripotency of early vocalizing
becomes canalized to the sounds of the ambient language.

Specific functions of prelinguistic vocalizing emerge at
different times over the first year. Infants first learn about
the range of sounds they can produce, as well as their social
effects, and later learn how to produce specific sounds in
ways that are tied to specific social interactions and objects.
Early vocal development (zero to six months) is first character-
ized by contextual learning [101], in which babbling becomes
associated with contingent and positive responses from the
social environment. As a result, infants build an expectation
that their vocalizations will get social attention. Such learning
is evidenced by the reaction of infants when social responses
are withheld. In face-to-face interactions with adults, five-
month-olds temporarily increase their amount of babbling
during a ‘still-face’manipulation, when adult social responses
cease [102,103]. This increase owing to the absence of adult
reactivity indicates an ‘extinction burst’ [104], the result of a
learned association between vocalizing and social responding.

Learning the social functions of vocalizing sets the stage
for more advanced vocal learning in the second half of the
first year. Vocal development from 6 to 12 months is now
characterized by production learning [101], in which infants
modify the acoustic structure of their babbling as a function
of social feedback. Infants rapidly learn new patterns of
vocal production from carer speech that is temporally contin-
gent on their sounds [96,97]. When mothers were instructed
to respond to their infant’s vocalizations with specific
speech patterns, infants learned to produce phonological pat-
terns that significantly resembled those of their mothers’
vocal responses. However, infant phonemes were not the
same as those of their mothers’ utterances, suggesting that
phonological learning was not imitation, but rather a form
of phonological pattern matching, facilitated by comparing
their own to their mother’s speech when these occurred in
close temporal proximity [97]. Infants who receive adult
responses for their vocalizing tend to continue to produce
speech-like vocalizations [105].

Such a strong role of social interaction illustrates another
function of prelinguistic vocal learning, that of facilitating
attention, caring and feedback from carers [106]. Carers
responses to immature speech tend to be appropriately struc-
tured and temporally coordinated with the infants’ utterances
[107,108]. Vocalizations that are more speech-like are more
likely to receive responses from adults [105,109]. These
responses contain information that is useful for the learning
of more advanced forms of vocal communication. For
example, adults simplify the linguistic structure of their
speech when responding to babbling, creating a favourable
environment for learning language [110]. Infants who hear
object names in response to their object-directed vocalizing
rapidly learned the names for the objects [111]. Thus, the
social environment of a vocalizing infant is a source of rich
structure that can guide advances in vocal learning. Immature
human vocalizing thus functions to elicit carers social
responses, creating opportunities for language learning.
6. Discussion
Aswe have shown, VPL has many functions and can serve as a
solution to diverse communicative challenges, but researchers
typically study only a handful. Biologists should, thus, cast a
wider net when considering the adaptive functions of vocal
learning abilities. We have reviewed a number of communica-
tive functions used by VPL species, but many of these
functions are also accomplished by non-learners. While parrots
are capable of object-referential vocalizations using VPL, vervet
monkeys produce referential alarm calls without it. Oscine
songbirds learn a complex song to attract a mate, but the
unlearned songs of frogs and cicadas accomplish the same func-
tion. For themajority of uses for vocalizations inVPL specieswe
could identify, we also found examples of non-VPL species
accomplishing the same vocal functions, as illustrated in
figure 1.
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Organizing VPL and non-VPL species according to the
functions of their vocalizations provides insight into the eco-
logical factors giving rise to VPL. This comparative approach
creates a richer dataset than considering vocal production
learners alone, and allows us to askmore powerful and precise
questions about how and why VPL evolved, and/or was
co-opted for new functions once it emerged. Under what cir-
cumstances is learning to produce a vocal signal more
advantageous for achieving its adaptive function(s)? We
suggest that for VPL to evolve in a given species requires as
prerequisites both the necessary cognitive capacity, and the
developmental opportunity (often, prolonged access to con-
specific ‘tutors’ granted either by an extended childhood
with parental care or high sociality throughout the lifespan),
but also some adaptive advantage owing to vocal learning
for enhancing communicative functions.

Vocal learning may confer an adaptive advantage in mul-
tiple ways. We propose three specific ways in which vocal
learning can provide an adaptive advantage. First, the ‘more
is better’ hypothesis posits that vocal learning increases reper-
toire size for a particular class of signals (songs, alarm calls,
etc.), therefore increasing the efficacy of that signal type
[112,113]. The mechanism underlying this posited increase in
efficacy could be avoidance of habituation in listeners and/
or increased signal range to reach awider variety of perceivers.
This hypothesis seems applicable to many songbird song
repertoires, predicting that mimics (who imitate heterospecific
song) and open-ended learners should have larger song reper-
toires. It applies to human language, because a large shared
vocabulary of words enables enhanced communication. It
also applies to the drongo species that mimic alarm and mob-
bing calls discussed above, or the shrike ‘prey luring’ example,
as the putative goal of these calls is to frighten or attract a large
number of heterospecific individuals. Finally, in dolphins or
parrots that use calls as vocal labels, a larger call repertoire
could target a larger group of recipients. The prediction that
vocal learning increases repertoire size has recently been ver-
ified in a phylogenetically controlled analysis in open-
versus closed-ended vocal learning songbirds [61], consistent
with the ‘more is better’ hypothesis for open-ended learners.
The ecological pressure for vocal learning of complex reper-
toires may originate in the demands of complex social
structures [114]. For example, chickadees housed in large
social groups acquired more complex repertoires, carrying
more information owing to a greater diversity of note types
and combinations than those housed in smaller groups [115].

However, some vocal learners do not seem to fulfil these
predictions. Budgerigars, caciques, humpbacks and orcas all
tend to produce distinctive group signatures or repertoires
rather than using vocal learning to increase repertoire size.
These examples suggest a second hypothesis, the ‘flexible
pruning’ hypothesis, whereby vocal learning provides an
enlarged potential repertoire, which is then ‘pruned’ down to
a much smaller set of the most appropriate or efficacious sig-
nal(s), as in action-based learning in songbirds [116]. By this
hypothesis, the goal is not simply more vocalizations, but
better (or more flexible) vocalizations, and vocal learning com-
bined with some selective process provides a means to this
end. This hypothesis predicts a large potential vocabulary
(which can be tested with tape tutoring or cross-fostering), fol-
lowed by selective attrition down to a smaller set (observable
during development). This smaller set may be determined by
feedback from listeners (e.g. female cowbirds [117], or bronze
cuckoo host parents [118]), be copied from successful individ-
uals (e.g. humpback whales [119]), or be ‘negotiated’ via
mutual imitation (as for budgerigars [75]). In open-ended lear-
ners such as canaries, flexible pruningmay occur seasonally as
the birds continually refine their repertoires [120]. Humpback
whales also continually refine their repertoires, occasionally in
dramatic fashion as eastern Australian humpbacks completely
replace their song every few years [121]. Flexibility via over-
generation and pruning also applies to human language,
because the phonological rules underlying word formation
generate vastly more potential words than are actually used
in the language (cf. [122]).

Finally, the ability of species to refine vocal repertoires via
social learning creates an opportunity for ‘cultural refine-
ment’ to arise, potentially accelerating vocal adaptation to
local environmental conditions by superimposing the possi-
bility for ‘cultural evolution’ over ordinary natural and
sexual selection and individual learning. Our third hypoth-
esis, the ‘cultural refinement’ hypothesis, is that vocal
learning specifically evolves to create the potential for cumu-
lative vocal culture. To the extent that vocal learning enables
individuals to copy call variants that are better suited to their
current context (whether owing to environmental trans-
mission, differing local competitors or changing mate
preferences), individuals capable of vocal learning would
show an advantage over those who rely solely on inborn
vocalizations, or who must generate and select suitable
vocal variants themselves (cf. [123]). This hypothesis treats
vocal learning as a subtype of social learning [124,125], and
sees vocally learned population-level vocal repertoires (dia-
lects) as prototypical examples of ‘animal culture’ [119,126].
Clear examples of rapid, and apparently functionally adap-
tive, cultural transmission are of course rampant in humans
[127], but cultural evolution across time is also well-attested
in humpback whales [7], sperm whales [128] and in the
songs of savannah sparrows [129] and white-throated spar-
rows [130]. For species like drongos which live in mixed
flocks and extensively use heterospecific calls [8,25], the
value of learning over inheritance seems clear. Testing this
hypothesis is challenging owing to difficulties quantifying
‘well-suitedness’ and of measuring the speed of vocal adap-
tation by natural selection versus cultural evolution.
However, the proposal could be tested in particular domains
where some independent measure of goodness exists; for
example, in the domain of environmental transmission, it
predicts that vocal learner’s songs should be better suited
to their local environments (e.g. by propagating further or
resisting noise better) than unlearned calls or songs (cf.
[131]). Evidence of rapid changes in songs in response to
urban noise [132,133] are consistent with this hypothesis.
The local social environment can similarly influence and be
influenced by cultural refinement, as is the case of sperm
whales, whose culturally transmitted dialects are a marker
of social group and serve to segregate individuals into
social units [134,135].

These three hypotheses are not mutually exclusive. For
example, in songbirds, if longer or more elaborate songs
more effectively attract mates, this can result in the evolution
of highly complex displays under either the ‘more is better’
or the ‘flexible pruning’ hypotheses. Our hypotheses and
case studies suggest a common theme: vocal learning is most
likely, and most useful, when the function of the learned
signal requires plasticity and social input. This is especially
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the case in species with complex social systems, in which an
individual may need to navigate a constantly changing
group of social partners, individually recognize and locate
familiar and unfamiliar conspecifics, form coalitions and coor-
dinate activities with them, and exchange information about
patchy resources. If so, why has VPL not evolved in other
highly social species, such as ungulates, seabirds and galli-
formes, canines, mongooses and non-human primates?
Learning vocalizations can be a risky strategy: along with
the potential to learn to produce one’s signals comes the poten-
tial to learn them incorrectly, jeopardizing chances of
reproduction and survival. An innately specified, unalterable
vocalization seems a safer prospect in many cases.

The capacity for vocal learning also comes with develop-
mental costs owing to the need for increased cognitive
capacity, and opportunity costs owing to the time and social
feedback required to learn. Many vocal learners share lengthy
childhoods, which provides the time needed to learn to voca-
lize from adults; however, prolonging the time devoted to
offspring care is costly to parents [136,137]. Thus, one impor-
tant potential constraint on VPL may be the requirement for
a prolonged learning period, and a concomitant delay in
becoming communicatively and reproductively competent.
This may help explain why roughly half of songbird species
show close-ended learning during a short sensitive period,
after which they are relatively inflexible (thus minimizing
this cost [61]). Furthermore, it may restrict the evolution of
open-ended vocal learning to relatively long-lived species.
However, this still does not fully explain the lack of vocal learn-
ing in certain species: orangutans have the longest period to
parental independence of any non-human animal (up to 8
years), but evidence for VPL in orangutans remains very lim-
ited [138,139]. Orangutans are mostly solitary, suggesting
that large social groupsmayalso be crucial. Environmental fac-
torsmay also play an important role in the adaptive advantage
of vocal flexibility. For example, flexibly learned individual
identity calls may be a necessity for parrots and cetaceans as
a result of the habitats in which they live. Using innate physio-
logical voice cues for individual identification, as some social
species do, may be unreliable when sound is affected by dis-
tance and density of intervening foliage, or by water depth
and pressure. In a complex social system or environment
where vocal cues of individual or group identity need to be
maximized, VPL may be highly advantageous [140,141].
7. Conclusion
What have we learned about the evolution of vocal learning,
and its phylogenetic occurrence, from our focus on diversity
of functions? First, we gain greater insight into the multiple
functions of learned signals. In many cases, the same vocali-
zation may serve multiple functions simultaneously:
birdsong often functions in both territorial defence and
mate attraction and also plays a role in individual recog-
nition. But learned songs can also serve as a ‘password’ for
group membership (caciques [142]) or an indicator of family
membership (grosbeaks [143]), or play a role in creating
and maintaining pair bonds (in many duetting species). It
is probably futile to seek ‘the’ function of song, and more
useful to explore the range of contexts and putative functions
of song, whether learned or not. Second, we can better gener-
ate and test evolutionary hypotheses by comparing known
vocal learners (e.g. northern shrikes) with specific non-
vocal-learning clades (e.g. margay), where we often have
limited understanding of the function of vocal signals. Inves-
tigating the evolutionary circumstances by which signals
accomplish similar functions with or without learning (e.g.
deceptive vocal mimicry to deter heterospecifics is learned
in drongos, but not nestling burrowing owls), would help
shed light on the adaptive value of vocal plasticity. Finally,
a broader focus beyond a few prototypical species and the
typically studied communicative functions—mate attraction
and territory defence—may reveal unexpected species as
vocal learners. Elephants, seals and killer whales were only
discovered to be vocal learners after mimicking hetero-
specifics, following rare instances of a prolonged period in
captivity and isolation from conspecifics [10,144–146]. A
broader focus on the many functions of, and socio-ecological
traits associated with, vocal learning, may spur the discovery
of new species of vocal learners, and help us gain a richer and
more complete understanding of the evolutionary forces
underlying this unique capacity.
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