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Abstract—Our prior research posits that the prelinguistic 
vocalizations of infants may elicit caregiver speech which is 
simplified in its linguistic structure. Caregivers’ speech clearly 
contributes to infants’ development; infants’ communicative 
and cognitive development are predicted by their ambient 
language environment. There are at least two sources of 
variation in infants’ language environment: the number and 
the diversity of words infants hear. We compare the change in 
total number of words (tokens) to the diversity of words against 
one another. Distributions of words of differing sizes are 
difficult to compare to one another because the size of the 
distribution largely determines the word diversity of the 
distribution. A novel approach to minimizing the challenges of 
comparing distributions of words is applied to data which were 
previously reported. We also conducted a new simulation study 
to estimate the probability that these results are expected by 
chance. We found that the linguistic structure of caregivers’ 
responses to infants’ prelinguistic vocalizations has fewer word 
types as compared to infant-directed but non-contingent 
speech. Our new method shows that contingent word 
distributions remain simplified as the number of total words 
sampled increases. By vocalizing, infants elicit caregiver speech 
which is simpler in structure and may be easier to learn. 

Keywords—Parent-infant interaction, prelinguistic vocal 
production, conversational turn-taking, speech environment, 
simulation 

I. INTRODUCTION 
 Caregivers’ behavior, which is organized around the 
nascent vocalizations of their offspring, is crucial for 
communicative development. Vocal learning in songbirds 
[1], marmosets [2], and humans [3] is facilitated by social 
feedback from adults that is contingent on the immature 
vocalizations of offspring. An initial step in human infants’ 
gradually developing vocal communication is the formation 
of expectations that their immature vocalizing reliably elicits 
social input [4,5]. No two caregivers talk to their children in 
exactly the same way and differences in infants’ social 
environment influence the nature of their communicative 
development. Variability in the linguistic structure of parents’ 
speech to prelinguistic infants predicts vocabulary growth [6]. 
Early communicative and language development is guided by 
the form and timing of caregivers’ responsiveness [7] and 
infant-directed speech [8].  However, the role infants play in 
eliciting these behaviors from their parents is only just 

beginning to be investigated [9]. In particular, little attention 
has been paid to the linguistic patterning of caregivers’ speech 
in response to infants’ vocalizations. 

 New studies have found that infant vocalizations facilitate 
the production of more simplified talk from adult caregivers 
[10]. This response moves the complexity of caregivers’ 
speech into a range that may facilitate infant learning. The 
lexical and syntactic structure of caregiver speech is 
simplified in response to infants’ vocalizations. Caregivers 
uttered fewer unique word types, fewer words per utterance 
and higher proportions of utterances which contained only a 
sinlge word when talk was contingent on vocalizations. At 
present, it is unclear if this effect of simplification is stable 
when larger corpora (i.e., larger samples of talk) are analyzed. 
Ongoing efforts employ sophisticated techniques to 
distinguish genuine word diversity effects from effects due to 
the sample size of words among different corpora (i.e., 
samples of talk) [11]. The goals of the current work are to 
better understand how the simplification of talk (specifically 
lexical diversity) may scale with the size of the sample of talk, 
and to more precisely quantify the simplification of 
caregivers’ contingent speech. 

 

  
Figure 1. A word-rank by word-frequency graph of contingent and non-
contingent words.  
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New challenges associated with interpretation and 
analysis of increasingly large-scale data collection efforts are 
being uncovered [12]. These challenges are being met with 
new techniques to address them. A central problem in 
understanding word diversity at scale is the fact that word 
frequency rank distributions are non-Gaussian (i.e., do not 
form a normal distribution). For example in Elmlinger et al., 
2019, word ranks show that few words are very frequent and 
many words are infrequent (Figure 1, also see Piantadosi, 
2014 for a detailed review of near-Zipfian distributions in 
natural language [13]). Heavy-tailed distributions such as 
these are characteristic of the objects encountered throughout 
infants’ early visual experience, the labels of those objects 
infants hear, and the object-referent mappings children begin 
to understand first [14]. These distributions are not amenable 
to the summary statistics traditionally used in psychology 
because data-clustering around the center does not occur [15].  

  Derivations of caregiver type-token ratios (TTR), a ratio 
comparing the count of unique words (types) to the count of 
words (tokens), have recently been shown to be predictive of 
children’s language outcomes [6, 16]. There are at least two 
issues surrounding TTR measures which remain 
understudied. First, because TTR nonlinearly scales with 
sample size, comparisons of TTR measures which were 
calculated from two different subsets (corpora) of words with 
unequivalent sample sizes are difficult to interpret [17]. 
Second, TTR measures are highly sensitive to the sample time 
period. Counting up the number of unique words from one 
corpus, for example, does little to illuminate the number of 
word types in another corpus which differs in total number of 
words. Initial attempts at addressing these issues are starting 
to yield new techniques [11]. Sampling techniques can give 
researchers insight into the sample size at which diversity of 
talk may be expected to generalize. Here we contribute an 
additional sampling technique alongside the central question 
posed in the present work: how does the word count relate to 
the number of unique words that infants’ vocalizations elicit 
from their caregivers? 

 Recordings of naturalistic parent-infant interactions at 
large scales afford new opportunities for connecting the real-
time structure of interaction to phenomena  such as language 
learning which emerges over longer developmental time 
scales. The everyday learning context of infants’ linguistic 
environment operates at multiple timescales. Learning 
happens in the moment when caregivers organize responses 
contingently around infants’ babbling [18]. Learning also 
occurs incrementally over longer timescales through 
sequences of vocal turn-taking bouts [19]. The extent to 
which shorter and longer timescales can be analytically 
compared to one another has received little attention. The 
present study connects the multiple time scales through the 
analysis of caregiver speech during unstructured play 
sessions and simulates the change in word diversity as a 
function of talk which was either coordinated around infants’ 
vocalizations or not. 

II. METHODS 

A. Participants 
In this study, thirty caregiver-infant pairs participated. 

The mean infant age was 9 months 20 days with a range of 9 
months 12 days to 10 months 4 days. We recruited these 
subjects from birth announcements in advertisements and 
announcements in local newspapers. As a gift for their 
participation, families received a t-shirt or a bib. The 
participants reported in the present research were also 
reported on in previous studies [3,10, 20]. 

B. Apparatus 
All recording sessions took place in a naturalistic 

environment which consisted of a twelve foot by eighteen 
foot playroom comprised of a toy box, toys and animal 
posters. This environment afforded infants free range to play 
and explore around the room as they wished. In the room were 
three digital cameras which were remote-controlled by 
experimenters capturing the video recordings. Infants wore 
overalls which concealed a wireless microphone (Telex 

 
Figure 2. (a) Caregivers and infants were recorded wirelessly with microphones while they played with toys in the lab. Graphical representation of turn-
taking data collated into categories of contingent caregiver speech (b) and non-contingent speech (c). Speech within turn-taking was categorized as 
contingent if it occurred within 2 seconds of infants’ non-cry vocalization. 
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FLM-22; Telex Communications, Inc., Burnsville, MN) 
along with a transmitter (Telex USR-100). Before each 
session, wireless lapel microphones (Telex FLM-22) were 
affixed to caregivers’ shirts. Caregiver microphones were 
connected to transmitters which were hidden in a pouch 
around their waist (Telex USR-100) (Figure 2a). Distinct 
audio channels were utilized in the recording of infants’ 
vocalization and caregiver speech, respectively. 

C. Procedure 
Each participant engaged in 30-minute play sessions in 

the lab. During these sessions, parents were asked to play like 
they would at home, which resulted in unstructured free-play. 

D. Speech Transcription 
The speech that parents produced was completely 

transcribed (see [10] for reliability measures). If parents’ 
utterances were separated by silence for longer than two 
seconds and/or if the pitch contours exhibited were terminal, 
they were segmented into separate utterances [21]. Following 
prior corpus transcription conventions, inflections were 
disregarded (dog, dogs, and doggy = dog) [22]. If parents’ 
utterances occurred before two seconds after the offset of 
infants’ vocalizations, then they were considered contingent 
utterances (Figure 2b). Responses which occurred after a two 
second time frame were considered non-contingent [23] (see 
Figure 2c). The mean and range F0 of caregivers’ contingent 
and non-contingent speech are consistent with previous 
descriptions of naturally produced infant-directed speech [8] 
(see Elmlinger et al., 2019 for more details). All caregiver 
utterances were directed at their infant. We excluded 
caregivers’ production of sound effects and their responses to 

infant vegetative vocalizations such as coughs, cries, and 
fusses from the analyses. 

E. Sampling procedure 

The values derived by TTR track closely with the size of 
the sample and therefore cannot be interpreted through an 
isolated sample run [11]. To circumvent this constraint, we 
capture several measures of word diversity along a continuum 
of total word sizes. To understand the changes in the counts 
of unique word types as number of total words increases, we 
pool all of the speakers in our corpora together and randomly 
sample from contingent and non-contingent corpora in 
increasing increments of size from the respective corpora 
separately. Because we are mainly interested in changes in 
type-token relationships over a range of token sizes, we 
allow individual caregivers to vary naturally in the number 
of words they contribute to the pooled corpora. 

Test Sample. We built samples through computing 
iteratively larger random samples starting at 100 words up to 
3000 words, incrementing in steps of 100 words (Table 1).  
We sampled with replacement to ensure that every sample 
was drawn from the entirety of the word distributions in both 
corpora. We conducted the sampling 100 times for each 
sample size. We then counted the number of unique word 
types for each  sample.   

Control Sample Techniques. The contingent word 
corpus contains far fewer total words (n = 6,199) than the 
non-contingent word corpus (n = 19,548) (Table 1). In 
previous work we utilized size-matched random control 
samples to better understand how this difference in sample 
size may contribute to the TTR curves generated from the two 

  
 

 
 
Figure 3. Control sample techniques. (a) Graphical depiction of size-matched random control samples where a single distribution is created from mixing 
contingent and non-contingent corpora into one unlabeled distribution of words [20]. To test whether we sample from the same underlying distribution when 
we generate TTR curves from original contingent and non-contingent corpora, we create new contingent-sized and non-contingent-sized corpora from a single 
distribution and derive control TTR curves to compare to the original TTR curves. If the curves differ from original to control samples, then this is evidence 
for the original samples not being drawn from the same distribution of words. (b) The extent of word diversity in the non-contingent corpora is investigated 
by plotting TTR curves of the word distribution after deeming a proportion of the corpora ineligible for sampling.   
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corpora [20]. In this approach, a single distribution is created 
from mixing contingent and non-contingent corpora into one 
unlabeled distribution of words (Figure 3a). The goal of this 
technique was to test whether we sampled from the same 
underlying distribution when we generated TTR curves from 
original (test) contingent and non-contingent corpora. We 
created new contingent-sized and non-contingent-sized 
corpora drawn from the unlabeled distribution and derived 
control TTR curves to compare to the test TTR curves. The 
new control corpora produced from this technique test the 
effects of sample size because the effects of contingent or 
non-contingent words themselves would be inherent in both 
samples as a result of randomization. This approach was 
tailored to provide evidence for or against our test samples 
having been drawn from the same distribution of words. If the 
control TTR curves differ from the test curves, then this is 
evidence for the test samples not being drawn from the same 
distribution of words. In previous work we found that the 
curves generated from the size-matched random control 
samples indeed yielded curves which differed from the curves 
generated from the test samples [20].  

The extent of word diversity in the non-contingent 
corpora is investigated by plotting TTR curves of the word 
distribution after deeming a proportion of the corpora 
ineligible for sampling (Figure 3b). The goal of size-reduced 
random control sampling is to observe how the TTR curves 
of non-contingent words changes as we reduce the number of 
eligible words which generate the curve. We observed the 
curve generated when deeming 90, 60 and 30 percent of the 
word corpora eligible for sampling. Crucially, reducing the  

 

 

 

non-contingent word corpus to 30 percent of its original size 
matches approximately to the size of the contingent word 
corpus. Curve comparisons between the non-contingent 30 
percent eligibility corpora and contingent corpora establishes 
whether reducing non-contingent corpora’s eligible size to 
match that of the contingent corpora’s size produces similar 
TTR curves. 

TABLE I.  STUDY SAMPLE SIZES 

 Original corpora All sampling techniques 
Contingent 6,199 100 - 3,000 

Non-contingent 19,548 100 - 3,000 
 

III. RESULTS 
 We report on two pieces of evidence which demonstrate 
that caregivers simplify their speech which is coordinated 
around their infants’ vocalizations. The comparison of 
primary importance is whether caregiver contingent and non-
contingent speech diverge in their TTR curves (counts of the 
number of unique word types as a function of increasing word 
token sizes). The approach we follow creates data which 
approximates the speech an infant would hear if they 
randomly selected samples of speech across all of our 
subjects. In addition, the simulations allow observations of 
hypothetical data at a larger scale of time than could be  
implemented within our laboratory (assuming that more time 
leads to more caregiver speech). If we see divergences 
between TTR curves of contingent and non-contingent 
speech as we increase sample size, this provides evidence for 
caregivers differentiating the complexity of their talk as they 
organize it around their infants’ vocalizing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
Figure 4. (A) Average counts of word types (number of unique words) as related to the total count of words (tokens) taken from random samples of words 
which were contingent and non-contingent on infants’ vocalizations and the individual type-token values for individual subjects. (B) Maximum and 
minimum counts of word types as related to the total count of words (tokens) taken from random samples of words which were contingent and non-
contingent on infants’ vocalizations. 
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Finally, we conducted null hypothesis testing with Monte 
Carlo simulations to verify whether the difference in the 
number of tokens in contingent and non-contingent 
conversation is due to chance. 

Test Sample Results. Figure 4a is a plot of the average 
count of the number of word types as a function of counts of 
total word tokens from the test samples of contingent and 
non-contingent words. In comparing the number of word 
types from contingent and non-contingent samples we found 
that 53 of the 100 pairs of random samples had more 
contingent unique word types than non-contingent speech at 
token size 100. With tokens at size 400 we found that 38 of 
the 100 pairs of samples had more unique word types in 
contingent than in non-contingent speech. Tokens at size 400 
and above, all exhibited comparisons which showed greater 
unique word types in non-contingent speech; furthermore, 
tokens at size 1600 and above all showed that all 100 paired 
random samples included a greater number of non-
contingent word types. The ranges of unique word types 
were completely nonoverlapping at all tokens at size 2400 
and above (Figure 4b). Our estimates suggest that contingent 
and non-contingent speech may be similarly diverse when 
token size is small (e.g., less than 400) but at high token sizes 
contingent speech may be less diverse than non-contingent 
speech. The complexity gap we observe between the word 
diversity of caregiver speech which is coordinated around 
infants’ vocalizations and non-contingent speech is 
harmonious with findings from adult conversations. In adult 
turn taking conversation, initial responses to conspecific’s 
speech turn typically consist of much more simple speech 
content than speech which comes non-contingently and 
speakers have time to decide how to frame their next thought 
[24].  

 
To compare our sampling results to the raw subject data, 

in the bottom left corner of Figure 4 we plotted the respective 
subjects’ type and token counts of speech from their 
contingent and non-contingent utterances (small dots). It is 
clear that the counts of both types and tokens are much lower 
than the curves generated by the random sampling. The 
reason for this difference lies in the coherence of contiguous 
speech content of any given speaker compared to the 
incoherence obtained from random sampling. As caregivers 
speak, in order to form coherent speech, they must repeat 
words at a much higher rate than would be observed in a 
random sampling of an equivalent size of words from a 
pooled distribution of all the caregivers’ speech. The 
usefulness of this raw data, however, is limited because they 
are confounded by sample size, a problem that is 
circumvented by our sampling approach.  

 
Control Sample Results. Figure 5 depicts the average count 
of unique word types as a function of the word tokens 
sampled from contingent words and non-contingent words at 
90%, 60% and 30% eligibility (see Figure 3b for a visual 
depiction of our size-reduced random control sample 
technique). Because contingent speech contains fewer total 
words to sample from in general, we derived non-contingent 
TTR curves which test the effects of incrementally 
decreasing the size of the eligible sample pool from which 

the curves are derived to test the effects of corpus size on 
TTR curve outcomes. The extent of differences from the 
contingent curve to the 30% eligibility non-contingent curve 
suggest the effect size of the difference between the word 
distributions of contingent and non-contingent speech. It is 
important to note that the contingent word corpus is .31 times 
the size of the non-contingent corpus, so 30% eligibility 
sampling is conservative in its estimate of non-contingent’s 
TTR curve at a size comparable to the contingent corpora. 
Comparing the number of word types in pairs of contingent 
and non-contingent samples at token size 100 results in 54 
out of 100 pairs of random samples which had more 
contingent unique word types than non-contingent. Making 
the same comparison at token size 300 results in 9 out of 100 
pairs of random samples which had more contingent unique 
word types than non-contingent. At every token size, the 
range for contingent and non-contingent unique word types 
overlap. By this estimation, when restricting the eligibility of 
the non-contingent corpora to more closely resemble the size 
of contingent corpora, the divergence between the two TTR 
curves is vastly reduced. We interpret this to mean that when 
ignoring a potential source of variation, such as amount of 
talk, it is possible that contingent and non-contingent talk 
only differs by a small amount. However, in our view, size-
matched control samples, which utilize all of the data points 
available in a given experiment, offer distinct advantages 
which the size-reduced control samples lack (Figure 3a). In 
previous simulations, we calculated differences between 
TTR curves generated from test samples and size-matched 
random control samples. This was useful because we could 
estimate effects due to sample size differences alone and 
compare those effects against those found in our test samples 
[20]. Further details on the results of size-matched random 
control samples can be found in our previous study [20].   

 
 
 

  

 
 
Figure 5. Average counts of word types (number of unique words) as 
related to the total count of words (tokens) taken from random samples 
of words which were contingent and non-contingent on infants’ 
vocalizations. Non-contingent samples were pulled from corpora where 
90%, 60% and 30% of the words were eligible for sampling. 
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IV. STATISTICAL MONTE CARLO TESTS 
The data presented above show differences in lexical 

diversity between contingent and non-contingent speech. It 
would be helpful if we can replicate those results in an 
independent simulation to verify our interpretation of the 
sampling results. The goal of the simulation below is to 
estimate the probability that the sampling results can happen 
even though there is no difference in lexical diversity 
between contingent and non-contingent speech. It is 
generally accepted that word frequency and word frequency 
rank follow a statistical trend known as Zipf’s law. 
Therefore, we can simulate caregivers’ speech in caregiver-
infant conversation by sampling words from a dictionary of 
caregiver speech, while adhering to Zipf’s law. If we assume 
that the dictionary sizes for contingent and non-contingent 
speech are same, we can count the number of unique tokens 
in the simulated dialogues. If we repeat this many times and 
count the occurrences when the number of unique tokens is 
same with the experiment, we can estimate the probability 
that the experiment result can happen even though there is 
no lexical diversity between contingent and non-contingent 
speech.  

The distribution of parents’ talk which is contingent on 
infants’ vocalizations is characterized by a TTR curve which 
is shaped differently than the curve produced by parents' talk 
which is non-contingent. The importance of this finding is 
the demonstration that parent talk has special properties as a 
function of its timing within a turn-taking context. A key 
point of emphasis is that even over long timescales, the 
frequency of word types which characterize different kinds 
of talk does not relate to the amount of talk under scrutiny in 
a deterministic manner. Indeed, in a sample from Montag 
and colleagues (2015) which compared a corpus of words 
found in several picture books (total word counts were 
approximately 70,000) against words in the CHILDES 
corpus (total word counts were about 6.5 million), it is clear 
from simulation that the picture book (smaller token count) 
has a higher diversity of words [22,25]. However, in our 
sample, the contingent speech (smaller token count), has a 
lower diversity of words. We now turn to computational 
experiments which replicate the results of this paper with 
functions that relate a range of presumptive caregiver 
vocabulary sizes to observe how contingent unique words 
accumulate as new words are uttered. 

 
Models and Assumptions. We used Monte Carlo 

simulations to test the generalizability and boundary 
conditions of our findings. The simulations tested the effects 
of a range of randomly selected caregiver vocabulary sizes 
on contingent and non-contingent lexical diversity. First, we 
assume that the vocabulary size of caregivers follows a 
Gaussian distribution. We denote the distribution of 
vocabulary size for contingent conversation as 𝒩!(𝜇! , 𝜎!) 
and 𝒩"!(𝜇"! , 𝜎"!) for non-contingent conversation. After 
we randomly sample vocabulary sizes for contingent and 
non-contingent conversation, we set the probability of 
selecting each word in this vocabulary following a near-
Zipfian distribution as shown in Eq 1. If we rank each word 

according to its frequency of occurrence, the frequency of 
the word with rank r, 𝐹𝑟𝑒𝑞(𝑤#) is proportional to the inverse 
of its rank [26,27]. The probability of selecting word 𝑤# , 
𝑃[𝑤#] can be derived by normalizing the probabilities of all 
words as shown in Eq. 2 [28]. Mandelbrot introduced the 
parameters 	𝛼  and 	𝛽  to improve the fit of the frequency 
distribution of actual languages across contexts and sample 
sizes [13]. However, the parameters of a near-Zipfian 
distribution are also different among participants, and we 
model this with the assumption that 𝛼  and 𝛽  themselves 
follow Gaussian distributions (where 𝛼 is the y-intercept of 
the distribution and 𝛽 is the slope). Finally, a conversation is 
built by randomly sampling words from this vocabulary 
which is characterized by a near-Zipfian distribution.  

In this simulation, we estimate the near-Zipfian 
parameters from the conversation data and use it to estimate 
the vocabulary size distribution. Using these parameters, we 
calculate the probability of a null-hypothesis that the 
experimental results might happen by chance across a range 
of simulation results. Figure 6 shows the overall process of 
this approach.  
 

 
 

Eq.  1 

 
 

Eq.  2 

  
 

 
Step 1: Estimating Zipfian parameters. We begin by 

estimating the near-Zipfian parameters from the 
experimental results because it is independent from other 
factors and affects all subsequent estimations. Zipf's law is 
an empirical observation and the parameters for distribution 
are different across individual languages and contexts. 
Piantadosi, 2014, estimated that 𝛼 is 1.13, and	𝛽 is 2.73 for 
a general English-speaking adult corpus but also showed that 
these parameters change according to the time and category.  

We used curve fitting methods with least square loss, 
where we estimated 𝛼  and 𝛽  for all participants for 
contingent and non-contingent conversation. The mean 𝛼 
obtained was 0.88 with a standard deviation of 0.035. 𝛽 has 
sample mean of 2.21 and standard deviation of 0.378. We 
used a Gaussian distribution for 𝛼  and 	𝛽  with these mean 
and standard deviation in the following simulation. 

Step 2: Estimating the vocabulary size distribution. 
We estimated the Gaussian distributions 𝒩! 	and 𝒩"! 	of the 
vocabulary sizes. The main assumption in this process is that 
the number of unique word types in the conversation of a 

  
 

Figure 6: Overall process of null-hypothesis testing using Monte Carlo 
Simulation. 
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certain length is predicted by a caregivers’ vocabulary size. 
We set 𝜇$ and 𝜎$ as the mean and the standard deviation of 
the number of unique types in the conversation, and 𝜇%	and  
𝜎% as parameters for the vocabulary size which follows the 
Gaussian distribution. To find optimal 𝜇%	 and 𝜎% , we 
estimate the parameters iteratively. First, we fix 𝜎%	and then 
find the 𝜇% ,  which will most likely produce the actual 
experiment data,  𝜇$	and 𝜎$. After finding the optimal 𝜇%, 
we fix it and find the optimal 𝜎% using the same methods. 
Then we use the optimal 𝜎% value in the next iteration and 
search for an optimal 𝜇% again. We repeat this simulation 
until the 𝜇% and 𝜎% converge to the specified threshold.  

Given µV and σV, we utilize simulation to estimate the 
expected µU and σU. We sample a vocabulary size estimate 
from the 𝒩(𝜇% , 𝜎%). Then we sample α and β from Gaussian 
distribution we estimated in Step 1 and use it to build a 
vocabulary with near-Zipfian distribution. Then we construct 
a random conversation by sampling from this vocabulary. 
We generated 30 contingent and non-contingent 
conversation pairs using the conversation length of the actual 
participants. We calculated the expected number of unique 
word types by repeating this process. 

When we use the mean (84.3) and standard deviation 
(41.2) of the number of unique types in the contingent 
conversation, we can estimate the 𝜇! 	𝑎𝑠  206.0 and 𝜎!  as 
90.2. Similarly, we estimated the non-contingent vocabulary 
distribution parameter 𝜇"!  as 275.8 and  𝜎"!   as 101.3 by 
using the mean (181.1) and the standard deviation (57.4) of 
non-contingent conversation.  

This computational simulation approach provides 
complimentary evidence to the findings in the Control 
Sample Results section if there is a low probability that the 
vocabulary size of contingent and non-contingent 
conversation are the same (null hypothesis). If this is the case, 
the null hypothesis is rejected. In this section, we will 
calculate the probability that the result obtained occurred 
when the mean of the vocabulary size is the same across 
contingent and non-contingent conversation. 

 

 Null Hypothesis testing. Our null hypothesis Η&  is that 
the mean of the vocabulary size distribution for the contingent 
and non-contingent conversation is same. We denote this 
vocabulary size distribution as 𝒩&(𝜇&, 𝜎&). 

We define the event 𝑍! 	as obtaining less than 2528 unique 
types from 30 conversations with the length from the actual 
experiment. The event 𝑍"!  is obtaining more than 5434 
unique types from the 30 contingent conversations.  

What is the probability that 𝑍! and 𝑍"! were drawn from 
the same vocabulary distribution 𝒩&(𝜇&, 𝜎&)  by chance? 
Because the two events are independent from each other, we 
can get 𝑃[𝐻&]  by multiplying the probability of the events by 
each other.  

 The 𝜎&	 value affects the 𝑃[𝐻&]	 such that the larger  
𝜎&		 value is, the higher 	𝑃[𝐻&]	  is estimated. For the 
conservative estimation of the Null-Hypothesis test, we use 
the higher value between 𝜎! 	𝑎𝑛𝑑	𝜎"! which was 101.3. 

Similarly, 𝑃[𝐻&] is affected by the 𝜇&. Smaller values of 
𝜇& make the event 𝑍! more likely. Higher 𝜇& values make the 
event 𝑍"!  more likely. When we search for the 𝜇&  that 
maximizes 𝑃[𝐻&] by monte carlo simulation, we get  𝜇&	= 
246 (Figure 7).  

When we calculate the 𝑃[𝐻&]  probability that  𝑍!  and 
𝑍"!  happened when the vocabulary size was from 𝒩&(𝜇& =
246, 𝜎& = 101.3) , we obtain 𝑃[𝐻&] = 0.35%. Therefore, we 
can reject the null-hypothesis with 1% significance and 
conclude that the vocabulary size for the contingent context 
is smaller than the non-contingent context (Figure 8). 

 

V. DISCUSSION 
 Our simulated environments make three main 
contributions. First, the content of caregivers’ contingent and 
non-contingent speech are different, showing that immature 
infant behavior functions to influence their learning 
environment.  Infants’ prelinguistic vocalizing may promote 
language learning because it facilitates parental behavior that 
contains simplified, more easily learned information. In our 
view, the coordination of caregivers’ speech content around 
infant immature vocalizations is an emergent property of 

 𝑷[𝑯𝟎] = 𝑷[𝒁𝑪]𝑷[𝒁𝑵𝑪] Eq.  3 

  

 
Figure 7: P[ZC], P[ZNC], and P[H0] as the mean of the vocabulary size 
changes. We can see that we get maximum P[H0] around when the 
vocabulary size is about 246. We used 𝜎! = 101.3 for this simulation.  

  
 

Figure 8: The histogram of ZC and ZNC when the vocabulary size is 
sampled from N(246; 101.3). The orange colored region represents the 
trials where the results were as extreme as the outcomes in the actual 
experiment.  
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early vocal turn-taking between caregivers and infants which 
facilitates the development of communication and early 
language. Second, our estimates demonstrate that the 
divergence of word diversity between contingent and non-
contingent speech was exacerbated at larger word counts. At 
larger scales, our estimates suggest that contingent talk to 
infants remains simplified while non-contingent talk 
continues to increase in complexity. Third, our simulations 
demonstrate that the simplification of talk is not necessarily 
caused by smaller samples of talk and that non-contingent and 
contingent talk are two distinct distributions of words in the 
infants’ early learning environment. The lexical complexity 
of contingent talk will not ‘catch up’ with that of non-
contingent talk. This is because the contingent and non-
contingent talk follow different curves describing their lexical 
complexity as a function of lexical activity.  

A. Methodological contribution 
The limitations inherent in simple TTR metrics need not 

dissuade researchers from utilizing TTR curves. On the 
contrary, by demonstrating theoretically motivated 
applications of these curves, we hope to promote additional 
novel approaches to better understand the early ambient 
language learning environment of prelinguistic infants. It has 
been well documented that TTR are tightly linked to sample 
size. Our simulations point out, however, that there are 
techniques to minimize the effects of sample size. Size-
reduced random control samples may not yield as many 
insights as size-matched random control samples. Through 
size-matched control samples, we can test whether TTR curve 
differences persist when we artificially create a single 
distribution of words and resample new corpora at matching 
sizes to the original. By forcing TTR curve generation from a 
single word distribution, we observe the true effects of sample 
size differences from a single word distribution. Results 
obtained by reducing the size of one corpus to compare the 
resulting curve against a similarly-sized corpus may be 
difficult to interpret. The main disadvantage of size-reduced 
sampling is that it does not provide evidence pertaining to 
whether the original corpora were drawn from the same 
distribution of words. Crucially, distributions of words can be 
compared to one another even when the size of the datasets 
are not equivalent. TTR curves can give rise to unique 
insights when used alongside size-matched control curves 
that illuminate whether sample size determines the nature of 
the distribution. A limitation of the present work is that our 
estimations do not incorporate any information about change 
in caregivers’ lexical diversity over the course of infant 
development. Together with our previous research, we 
provide evidence that a) individual caregivers contingent 
lexical diversity is simplified and b) this simplification 
phenomenon exists above and beyond what is expected due 
to sample size differences in contingent and non-contingent 
speech [10]. 

 However, visual inspection of the estimates becomes 
more challenging as vocabulary size differences become 
smaller. Prior research utilized the size-reduced random 
sampling technique to investigate the difference between 
word diversity in a picture book corpus and the CHILDES 
corpus [25]. When we employ the same technique, the 

observed differences between contingent and non-contingent 
conversation are small. Similarly, the size-matched random 
control sampling would show less of a difference between the 
lexical diversity of contingent and non-contingent talk as the 
vocabulary size difference becomes narrower. Monte Carlo 
simulation studies provide another framework for estimating 
the difference in vocabulary size between contingent and non-
contingent talk. Monte Carlo simulation studies rely on many 
assumptions and corresponding parameters. Therefore, the 
results should not be accepted as a conclusion, rather as 
additional supporting evidence. Among many parameters, 
our conjecture is that the standard deviation of the vocabulary 
size between individuals will be the key factor affecting the 
simulation result. Our Monte Carlo simulation estimates the 
chances of obtaining our results when vocabulary sizes for 
contingent and non-contingent speech are the same. As a 
concrete example, we used 101.3 as the standard deviation 
because it was the largest number from the fit in the 
experimental data. In this case, the P[H0] was 0.35% meaning 
that it is unlikely that vocabulary sizes for the contingent and 
non-contingent speech are the same. However, when we use 
larger standard deviation such as 160, the P[H0] was 6.5% 
which will not pass a 5% significance level for rejection of 
this null hypothesis. A more reliable estimate of the standard 
deviation of individual vocabulary sizes would give our 
simulation more predictive power. Estimating individual 
vocabulary size, however, is still a challenging problem 
especially given the diversity of the social contexts. 

B. Developmental contribution 
Functions of simplified caregiver speech. Over long 

timescales, our simulation estimates that caregivers’ speech 
which is organized around infants’ vocalizations will 
generally contain a higher amount of repeated lexical items. 
The evidence on the influence repetition has on language 
development is mixed over longer time scales (6 to 12 
months); repetitive language input has been linked to both 
lower [29,16] and greater [6] vocabulary sizes later in 
development. The extent to which caregivers organize less 
repetitive speech around infants’ vocalizations predicts 
infants’ vocal maturity [10]. Caregivers naturally use similar 
words and phrases in contiguous utterances, these quasi-
repetitive adjacent utterances are called variation sets [31]. 
For example, a caregiver might say “Is that a spoon? Where’s 
your spoon? Get your spoon!”. Variation sets facilitate 
learning in adults and similarly guide early linguistic learning 
in infants [30,31]. Repetition is not isolated to infants’ 
language environment. For example, during meal times 
infants’ encounter iconic objects that are labeled reliably by 
caregivers, creating recurrent visual and linguistic cues 
coupled closely in time. Caregiver speech, organized around 
daily routines, is part of a constellation of cues which 
facilitate word learning from everyday activities [32,33,34]. 
The earliest words infants learn could arise out of 
prelinguistic turn-taking interactions, such as when an infant 
points at an object and vocalizes, then the parent utters the 
object’s label. Indeed, infants in experimental settings learn 
word-object mappings when caregivers respond to infants’ 
object-directed vocalizations with object-label utterances 
[35]. 
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Caregivers’ contiguous speech is highly coherent and 
therefore repetitive, but over long time scales, continuous 
speech will change topic or dive deeper into a single topic and 
therefore elicit a greater diversity of words. However, 
because it takes speakers time to plan more elaborate and 
diverse utterances in production, contingent speech will 
always be relatively simplified compared to non-contingent 
speech. We do not hypothesize that the more parents simplify 
their speech, the better the opportunities for infants’ learning. 
Evidence suggests that infants who hear more lexical 
diversity spoken contingently on their vocalizations have a 
greater capacity for producing syllables that include 
consonants [10]. Thus, increased contingent caregiver lexical 
diversity may facilitate infants’ vocal learning.  

Evidence suggests that stable speech sounds might be 
better targets for infants to base refinement of their vocal 
repertoires on. Simplified caregiver speech might be useful 
because it does not overtax infants’ limited working memory 
at the moments they are ready to learn. In addition to the 
perception of mature adult speech, infants’ own vocal 
productions can serve as a source of stability in the input. 
Recent findings suggest that infants who have a stable 
phonological pattern in their vocal repertoire are better at 
segmenting the speech stream in perception [36]. One 
interpretation of these findings is that when stable 
representations in infants’ phonological memory are present 
(from either within or without), the processing load for 
similar phonological structures is eased. It is possible that 
early stability in infants’ production is useful for similar 
reasons in perception. When caregivers produce similar 
sound forms, infants could discover underlying structure by 
examining the input’s redundancy. 

Why is the speech content of caregivers’ responses to 
infants’ vocalizations simplified? We propose two testable 
hypotheses which can guide future work on this question. The 
altriciality effects hypothesis suggests that the source of 
change between contingent and non-contingent lexical 
diversity is infants’ vocal altriciality. Human infants are 
altricial – they depend on caregivers for survival over an 
extended period of development. Characteristics of 
immaturity (e.g., neotenic appearance) may serve as cues that 
facilitate caregiving behavior [37]. Infants’ early 
vocalizations may serve as salient cues of immaturity. Even 
when infants are capable of engaging in sophisticated social 
behavior (e.g., smiling and pointing) their prelinguistic 
vocalizations are still immature and do not resemble words or 
language. Such immaturity may drive the observed 
simplification of adults’ contingent speech, and explain why 
non-contingent speech is not simplified.   

An alternative hypothesis is that caregivers respond to 
infants’ vocalizations with simplified speech because of the 
reduced processing time allotted them. The processing time 
hypothesis suggests that the source of change between 
contingent and non-contingent lexical diversity is the small 
increment of time between infants’ vocalization and 
caregivers’ speech in response. Two pieces of evidence 
would speak to these hypotheses. First, adults’ lexical 
diversity should be measured in adult-adult turn-taking as a 
function of contingency. If adults’ speech complexity differs 

across responses to adult speech and infant vocal turns, this 
would provide evidence in favor of the altriciality effects 
hypothesis. Second, if the reduced processing time hypothesis 
holds, then the latency between infants’ vocalizations and 
caregiver speech responses should correlate positively with 
caregivers’ speech complexity. If there is no correlation 
between latency and speech complexity, this would provide 
evidence in favor of the altriciality effects hypothesis. These 
analyses are beyond the scope of the present paper, but future 
work in our lab will shed light on these hypotheses. 

The length of infant vocalizations may have also 
influenced the nature of caregiver responses. As infants age, 
they begin to string together multiple prelinguistic 
vocalizations closely in time, structuring vocal bouts into 
syllable sequences [38]. In the current study we considered 
parents’ responses to non-cry vocalizations to investigate the 
influence of these vocalizations on caregiver speech. 
However, it is possible that the complexity of caregivers’ 
speech changes in response to infant vocalizations that extend 
further in time. In the future, there is a need to study the 
influence of infants’ vocalizations which span multiple 
syllables to investigate whether infant vocal sequences 
change caregiver responding. It is possible that one pathway 
for infants to increase the lexical diversity of their caregivers’ 
speech is by organizing their vocalizations with sequential 
structure within conversational turn-taking contexts. 

Our findings have important implications for data 
collection at large scales and language development 
intervention studies. Home recording efforts can reveal the 
extent to which there are changes in linguistic structure within 
parent-child vocal turn-taking bouts over time [39]. The main 
focus in several interventions for at-risk families surrounds 
the number of words produced by caregivers (e.g., 
Providence Talks; http://www.providencetalks.org) or turn-
taking with infants [40]. Evidence suggests that interventions 
are effective at promoting early language development when 
caregivers’ increase their lexical activity that is organized 
around infants [41]. Future research should seek to better 
illuminate how caregivers might attempt to continually adapt 
their contingent talk to match their infants’ current 
communicative capacities.   

Our findings point to the role of infants’ immature 
vocalizations in shaping infants’ own language learning 
environment. Computational models of vocal learning utilize 
mechanisms of accurate prediction of environmental 
changes; such a mechanism may also support infants in 
contexts of social learning [42, 43]. Theoretical frameworks 
have postulated that discrepancies between predictions and 
observed outcomes may elicit a learner’s curiosity. Models 
centered around curiosity select to learn from information 
from which they can diminish the error of their own 
predictions at maximum rates. When infants vocalize they 
create opportunities to learn the effects of their own 
vocalizations on their caregivers’ behavior. During their first 
12 months of life, infants rapidly learn that their own 
prelinguistic vocalizing elicits responses from their 
caregivers [5]. Eliciting mature speech sounds from 
caregivers may become the target of infants’ curiosity and 
subsequently guide their vocal development. For a more 
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advanced understanding of early infant learning, future large-
scale observational, computational and experimental research 
should investigate the effects infants have on the temporal and 
distributional properties of parents’ speech. 
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